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ABSTRACT

Probabilistic quantitative precipitation forecasts (PQPFs) were generated
during July to October 2010 using European Centre (ECMWF), United Kingdom
(UKMO), US (NCEP) and Canadian (CMC) forecast data. 24-hour accumulated
precipitation forecasts were evaluated within the contiguous US against
precipitation analyses for +1 to +5 days lead at 1-degree grid spacing.

PQPFs from ECMWF’s ensembles generally had the highest skill of the raw
ensemble forecasts, followed by CMC. PQPFs from CMC forecasts were the most
reliable but the least sharp. PQPFs from NCEP and UKMO ensembles were the least
reliable but sharper.

Multi-model PQPFs were more reliable and skillful than individual ensemble
prediction system forecasts. The improvement was larger for heavier precipitation
events than light events.

ECMWEF ensembles were statistically post-processed using extended logistic
regression and the five-member weekly reforecasts for the June - November period
0f 2002-2009. Multi-model ensembles were also post-processed using logistic
regression and the last 30 days of prior forecasts and analyses. The reforecast-
calibrated ECMWF PQPFs were more skillful and reliable for the heavier
precipitation events than ECMWF raw forecasts but less sharp. Raw multi-model
PQPFs were generally more skillful than reforecast-calibrated ECMWF PQPFs for the
light precipitation events but about the same skill for the heavier events; also, they
were sharper but somewhat less reliable than ECMWEF reforecast-based PQPFs.

Post-processed multi-model PQPFs did not provide as much improvement to the
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raw multi-model PQPF as the reforecast-based processing did to the ECMWF
forecast.
The evidence presented here suggests that all operational centers, even

ECMWEF, would benefit from generating reforecasts and sharing data in real time.



74

75

76
77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

1. Introduction

An ongoing challenge with short- and medium range ensemble prediction
systems (EPSs) is how to generate probabilistic forecasts that account for the
system errors in the ensemble. System errors include sampling error due to the
finite ensemble size, the error introduced by model imperfections such as the grid
truncation, the use of deterministic parameterizations (Houtekamer and Mitchell
2005), and assimilation system and observation imperfections. There are many
methods for treating system error, from introducing stochastic aspects into the
ensemble prediction system (Buizza et al. 1999, Shutts 2005, Berner et al. 2009,
Palmer et al. 2009, Charron et al. 2010), using multiple parameterizations (Charron
et al. 2010, Berner et al. 2011), using multiple models (Bougeault et al. 2010), and
statistical post-processing.

Two methods that will be explored and contrasted here are the multi-model
methods and statistical post-processing. The underlying hypothesis of multi-model
ensembles (Krishnamurti et al. 2000, Wandishin et al. 2001, Mylne et al. 2002,
Doblas-Reyes et al. 2005, Hagedorn et al. 2005, Weigel et al. 2008, Candille 2009,
Johnson and Swinbank 2009, Bougeault et al. 2010, Iversen et al. 2011) is that the
many differences between constituent EPSs will result in them generating ensemble
forecasts with quasi-independent systematic errors, so the combination may result
in a more accurate estimate of the uncertainty. Practically, also, these are
ensembles of opportunity. If all centers are willing to share rather than sell their

forecast data, the additional members can be used for only the cost of data
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transmittal and storage, so they may provide an inexpensive way to improve
forecast skill. However, there are some potential disadvantages of multi-model
ensembles. Developing an accurate, stable weather prediction system is costly, so
multi-model ensembles are likely to be less useful when formed from immature
systems. System outages may prevent routine access to other centers’ ensembles.
One or other of the models is likely to have been changed recently, rendering it
difficult to understand the multi-model system error characteristics. Also, the
hypothesis of quasi-independent errors may not always hold. Practically, each
operational center is interested in providing a high-quality product without
depending on another center’s data. When another center develops a method that
improves the forecast significantly, it may be adopted at other operational centers.
The similarity could result in some co-linearity of errors and decreased collective
usefulness (Lorenz et al. 2011).

Another method for addressing system error is through statistical post-
processing. Discrepancies between time series of past forecasts from a fixed model
and the verifying observations/analyses can be used to modify the real-time
forecasts. For some variables such as short-range forecasts of surface temperature,
a short time series may be sufficient (Stensrud and Yussouf 2003, Yussouf and
Stensrud 2007, Hagedorn et al. 2008). For others such as heavy precipitation and
longer-lead forecasts, using a long time series of reforecasts has been shown to
dramatically improve the reliability and skill of the probabilistic forecasts (Hamill et
al. 2004, Hamill et al. 2006, Hamill and Whitaker 2007, Wilks and Hamill 2007,

Hamill et al. 2008). A drawback of using reforecasts is that a forecast time series
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spanning many years or even decades may be necessary to produce a sufficiently
large sample to adjust for systematic errors in rare-event forecasts. Since forecast
models are frequently updated, which may change the systematic error
characteristics, either a forecast model must be frozen once a reforecast data set has
been generated, or a new reforecast data set must be generated every time the
modeling system changes significantly. Hence, reforecasting can be computationally
expensive and can restrict the ability of a forecast center to upgrade its system
rapidly. Recently, statistical post-processing methods have been the subject of
much investigation (Gneiting et al. 2005, Raftery et al. 2005, Sloughter et al. 2007,
Wilson et al. 2007, Vannitsem and Nicolis 2008, Glahn et al. 2009, Bao et al. 2010).
To date, however, there have been no systematic comparisons of multi-
model and reforecast-calibrated PQPFs verified over a large enough area and a long
enough period of time to confidently assess the relative strengths and weaknesses
of these two approaches. This study attempts to provide such a comparison for this
high-impact forecast parameter. Using TIGGE forecast data from the US National
Centers for Environmental Prediction (NCEP), the Canadian Meteorological Centre
(CMC(), the United Kingdom Met Office (UKMO), and the European Centre for
Medium-Range Weather Forecasts (ECMWF), multi-model ensemble 24-h
accumulated probabilistic forecasts of precipitation were generated and then
compared against ECMWEF forecasts that were statistically adjusted using their
reforecast data set. The comparison was performed over the contiguous US

(CONUS) during the period July-October 2010. Statistical adjustments were also
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attempted with multi-model forecasts, trained on the previous 30 days of forecasts
and analyses.

Below, section 2 describes the data sets used in this experiment, the
verification methodology, and the statistical post-processing method. Section 3

provides results, and section 4 some conclusions.

2. Data sets and methods.

a. Analysis data used.

A recently created precipitation data set, NCEP’s Climatology-Calibrated
Precipitation Analysis (CCPA), was used for verification. The CCPA attempts to
combine the relative advantages of the 4-km, hourly NCEP Stage-IV precipitation
analysis (Lin and Mitchell 2005), and the daily, 0.25-degree NCEP Climate Prediction
Center (CPC) Unified Precipitation Analysis (Higgins et al. 1996). The former is
based on gauge and radar data, the latter solely on gauge data. A disadvantage of
the Stage-1V product is that it may inherit some of the biases due to the estimation
of rainfall from radars. A disadvantage of the CPC product is that there are areas of
the US that are only sparsely covered by gauge data. The CCPA analysis regressed
the Stage-1V analysis (the predictor) to the CPC analysis (the predictand), thereby
reducing bias with respect to the in-situ observations. In several of the driest
locations in the western US, the CCPA analysis was set to missing, for the regression
analysis was untrustworthy and singular due to no precipitation in either analysis
product. In such cases, the CCPA analysis for this study was simply replaced with

the Stage-1V analysis. For our purposes, we used CCPA analyses that also were
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upscaled to 1 degree and accumulated over a 24-h period in a manner that
preserved total precipitation, similar to the “remapping” procedure described in
Accadia et al. (2003). The CCPA analyses were available from 2002 - current, a
shorter period than the ECMWF reforecasts, thus limiting the amount of training

data that could be used in the statistical post-processing.

b. Forecast and reforecast model data.

For this experiment, 20 perturbed member forecasts of 24-h accumulated
precipitation were extracted from the UKMO, CMC, NCEP, and ECMWF ensemble
systems archived in the TIGGE database at ECMWEF. Probabilities were calculated
directly from the ensemble relative frequency, referred to as “raw” probabilities
henceforth. The forecast period was July to October 2010; only 00 UTC initial time
forecasts were extracted in order to allow comparison with a post-processed
forecasts using ECMWF’s reforecasts, which were generated only from 00 UTC
initial conditions. Daily forecasts of 24-h accumulated precipitation were examined
from +1 to +5 day lead. Regardless of the original model resolution, all centers’
forecasts were bi-linearly interpolated to a 1-degree latitude-longitude grid
covering the CONUS using ECMWF’s TIGGE portal software. ECMWF’s
interpolation procedure set the amount to zero if there was no precipitation at the
nearest neighboring point and the interpolated value was less than 0.05 mm. No
control forecasts were included, just the forecasts from the perturbed initial
conditions. Other forecast centers’ contributions to the TIGGE archive were not
used here for various reasons, such as the unavailability of 00 UTC ensemble

forecasts from the Japan Meteorological Agency. For size consistency and to
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facilitate skill comparisons, only the first 20 of the full 50 ECMWF member forecasts
were used in the generation of the multi-model ensemble, though the 50-member
ECMWEF forecasts were evaluated for skill and reliability. More detailed
descriptions of the configuration of these four ensemble systems are described in
Appendix 1.

When calibrating ECMWF data with reforecasts, the 5-member weekly
reforecasts precipitation data were extracted from ECMWEF’s weekly reforecast
archive (Hagedorn 2008) and similarly interpolated to the 1-degree grid. The
control reforecasts were initialized from the ERA-Interim reanalysis (Dee et al.
2011), which used version Cy31r2 of the ECMWEF Integrated Forecast System (IFS)
in the data assimilation process. The 2010 real-time ensemble forecasts and the
reforecasts were then run using IFS model version Cy36r2 (more detail is provided
in appendix A).

The four perturbed initial conditions for the reforecasts were generated with
a combination of their singular-vector approach (Molteni et al. 1996, Barkmeijer et
al. 1999) and their “ensembles of data assimilations” or “EDA” (Isaksen 2010) that
used a cycled, reduced resolution 4D-Var and perturbed observations. However, for
initialization of the reforecasts, ECMWF used the EDA perturbations from 2010 and
applied them to the 2002-2009 data rather than running the EDA during the
reforecast period. To apply EDA to dates in the past would have been
computationally expensive, but having not done so may have resulted in the

perturbations in the reforecast having less flow-dependent character, possibly
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making them somewhat statistically inconsistent with ECMWF’s real-time ensemble
forecasts.

Since precipitation analysis data was only available for the period from 2002
forward, the training data was limited to the reforecasts for period of June to
November, 2002-2009, or 8 years. To limit the possible deleterious effects of
seasonal biases in the forecast model, only the reforecast data for the month of
interest and the month before and after were used. For example, when calibrating
July forecasts, June-July-August reforecast data was used. With reforecasts
generated once per week, this typically meant there were ~13 once-weekly samples
x 8 years = 104 samples. Tthis was in many cases an insufficient sample size, so
data from other grid points were used to increase the training sample size

(appendix B).

c. Statistical post-processing methodology.

The extended logistic regression (ELR) approach of Wilks (2009) was used
here, a procedure that permitted the development of a single regression equation
that was suitable for predicting probabilities of exceeding any precipitation amount.

The probability was estimated with a function of the form

exp[f(x)]

S A 1
P 1+exp[f(x)] (1)

where f(x) was a linear function of the predictor variables. In this case, the

predictors were (a) the ensemble-mean forecast X raised to the 0.4 power, (b) the

product of (a) and the variance ¢ to the 0.4 power, and (c) the precipitation event

threshold T raised to the 0.4 power. The linear function was thus
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f(x)=by +bx"* +b,x" > +b,T*. (2)
The choice of these predictors was arrived at through some trial and error. The
power transformation of the predictors helped make the input data somewhat more
normally distributed. The probabilistic forecast skill was also only mildly
dependent on the inclusion/exclusion of the predictor with the product of the
transformed mean and variance. Skill was also only slightly dependent on the
power of the transform, with 0.4 providing an approximate minimum. Previous
values of power transformations in the literature have ranged from %2 in Hamill and
Whitaker (2006) and Schmeits and Kok (2010), 1/3 in Sloughter et al. (2007), and
% in Hamill et al. (2008) and Roulin and Vannitsem (2011). The use of the product
of the ensemble mean and variance follows Wilks and Hamill (2007). The additional
predictor incorporating T permitted the single regression equation to be used to
predict probabilities across the range of possible amounts. A disadvantage of this
ELR approach (as opposed to approaches such as the analog approach discussed in
Hamill and Whitaker (2006)) was that this algorithm was not able to correct for
possible position biases in forecast features.

ELR was applied both to calibrating real-time multi-model forecasts and to
calibrating ECMWEF forecasts alone using the weekly reforecasts. It was found that
forecast skill increased if some method was applied to increase the modest training
sample sizes. A discussion of how sample sizes were augmented using data from
other nearby forecast grid points is provided in Appendix 2.

Roulin and Vannitsem (2011) noted that since the ECMWEF reforecast size (5

members) was smaller than the operational ensemble size (50 members; or in the

11
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case here, 20 members selected from the 50), the regression coefficients may be
somewhat biased when trained with a smaller ensemble compared to what they
would be were they trained with a larger ensemble. Hence, when the coefficients
are used to correct the larger real-time ensemble, they may produce somewhat
biased probabilistic forecasts. They adjusted the values of the 5-member ensemble
training data to better estimate the values that would be obtained with the larger
real-time ensemble. An analogous approach was tried here but did not improve the

forecast skill. The results discussed below will omit this adjustment.

d. Verification methods.

The primary verification methods used here were Brier Skill Scores (BSS),
continuous ranked probability skill scores (CRPSS), and reliability diagrams (Wilks
2006). The BSS and CRPSS as conventionally calculated (see section 7.4.2 of Wilks
(2006)) can exaggerate forecast skill, attributing skill to variations in climatological
event probabilities. Thus, the procedures suggested in Hamill and Juras (2006) were
used here to avoid this.

To calculate the BSS, the score was calculated separately for subsets of points
that had more uniform climatological probabilities. The overall BSS was the average
of the skill scores over these subsets. The specific procedure was as follows. Using
the 1-degree precipitation analysis data from 2002-2009, for each month the
climatological probability of a given precipitation event was estimated from the
observed frequency. For a given event such as > 1 mm (24 h)-1, the ns grid points
within the CONUS were sorted from lowest to highest event probability. The sorted

points were then divided into k=6 classes, with the lowest bin containing the ~ ns/6

12
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grid points with the lowest event probabilities, the highest bin containing the ns /6
points with the highest probabilities, and so on (Fig. 1). Let BS'' = [bs{(l - bsgl]
denote a matrix of Brier scores for forecast model f1, where bs/' was a nq -

dimensional (= 123, the number of case days here) column vector of average Brier
scores for the points in the ith class and for forecast model fI. An element of this
vector thus provided the average Brier Score for all of the grid points in the ith class
on a particular day; the samples were weighted by the cosine of their latitude to

account for differences in grid box size. The average over the 123 case days

produced a vector bs' = [ES‘{I yeens Eé] . Similarly, for climatology there was an
array of Brier scores, BS® = [bsf seens bsg] and a vector of their averages over the
123 days, bs = [E@i ,,E@E} Following Hamill and Juras (2006) eq. (9), the

overall BSS for model f1 was then calculated as

BSSzil[l—ES?]. (3)
o 0 bsi
The boundaries between the classes were calculated independently for each event,
so it was possible that a given grid point may have been assigned to different classes
when evaluating, say, the 1- and 10-mm BSSs.

BSS confidence intervals were estimated using the paired block bootstrap

approach of Hamill (1999). The input data to the bootstrap approach consisted of

arrays of BST and BS” for two competing models, f1 and f2, as well as BS¢. Let

bs’'(d)= [bslfl(d) voor, bs! (d)] be the vector of forecast scores on the dth case day,
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and similarly bs’*(d) the vector for forecast model f2. The daily differences in Brier
scores, bs’'(d)—bs’*(d) were determined to be approximately statistically
independent of bs’'(d +1)—bs’*(d +1), with 1-day lagged rank correlations ranging
from 0.08 for 1-day forecasts to 0.21 for 5-day forecasts. Thus, the data was judged
to be amenable to a paired resampling strategy, with these distinct vector blocks of
data for each day. The following process was then repeated 10,000 times. For each
of the 123 days, a random uniform number between 0 and 1 was generated. If the

number was greater than 0.5, bs’'(d) was randomly selected for inclusion in sample
1, bs’*(d) was selected for inclusion in sample 2, and vice versa if the number was

less than or equal to 0.5. The vector of average Brier scores for samples s1 and s2

were then calculated, bs' and bs" . The BSS for samples 1 and 2 were generated
via eq. (1), and the difference between the BSSs for the two samples was noted. The
confidence intervals are the 5% and 95t percentiles of the difference between the
BSSs of the two samples from the distribution generated through the 10,000
iterations.

These block bootstrap confidence intervals should be regarded as
approximations. An assumption underlying this process is that there were 123

independent data samples. However, bs’'(d)and bs’'(d +1) were slightly

correlated as discussed above, especially for the longer-lead forecasts, which will
contribute a slight over-estimate of the effective sample size and thus underestimate
of the confidence interval. On the other hand, data from grid points across the

CONUS were aggregated in this procedure and thereafter considered as a single
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block. In reality there may be far more than one independent sample spanning the
CONUS, thus leading to an under-estimate of sample size and consequent
overestimate of the confidence interval in this approach. Note also that for
simplicity of presentation, the skill diagrams will show only one set of confidence
intervals, e.g., between NCEP and ECMWF forecasts. Slightly smaller confidence
intervals could be expected were they computed using ECMWF and CMC forecasts,
given their more similar skills.

In order to make sure that the CRPSS did not excessively reflect the skill of
the climatologically wet grid points, an alternative to the standard method of CRPSS
calculation was followed here. This method is analogous to how CRPSS would be
computed if the forecasts were of probabilities of exceedance of various quantiles.
An example of such a forecast product expressed in quantiles are NCEP/CPC’s 6-10
day and 8-14 day forecasts (e.g.,
http://www.cpc.ncep.noaa.gov/products/predictions/610day/), which provide
probabilities of below-normal /near-normal/above-normal temperature and
precipitation, i.e., probabilities for the < 1/3 and = 2/3 quantiles. In this alternative
method of calculation, the CRPS at a given grid point was not computed by
integrating differences between observed and forecast cumulative distribution
functions (CDFs) over a range of precipitation values (the standard method). Instead,
the differences between observed and forecast CDFs were integrated over the
percentiles of the CDF, which were determined separately for each model grid point

and each month. Specifically, given nq case days, for thes=1, ..., nq X ns samples, let

qs= [qf, ---»‘];o} be the 20-dimensional vector of the precipitation quantiles

15
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associated with the 2.5t, 7.5th, . 97.5th percentiles of the climatological CDF for that
point and that month. The average forecast CRPSy was determined by integrating in
steps of 5 percent:

> cos(9,) Y 0.05x[ F*(g;)-0*(a;)]

CRPS., = =
' > cos(9,)

(4)

)

where F’ (qli‘q) represents the forecast’s CDF for the st sample evaluated at the g,

quantile, and O° (qfq) represents the same, but for the observed (analyzed). ¢, is the

latitude of the grid box, the cosine factor accounting for latitudinal variations in grid

box size. For raw ensemble guidance, F’ (qli‘q) was directly computed from the

ensemble relative frequency. For example, if 5 of 20 members had values exceeding

q;, then F* (ql:‘q) =0.75. For post-processed forecasts, F* (qli‘q) was determined by

numerical integration of egs. (1) and (2). For the observed CDF, the analyzed state
was assumed perfect, i.e., no analysis errors were incorporated, so the analyzed CDF
was a Heaviside function, 0 at the quantiles less than the analyzed value, 1 at
quantiles greater than or equal to the analyzed value. The CRPS of the climatological
forecast, CRPS., was calculated as in eq. (4), but substituting the climatological CDF
for the forecast CDF. Finally, the overall skill score was calculated as CRPSS = 1. -
CRPSy/ CRPS.. As with the BSS, a paired block bootstrap approach was used to
estimate the confidence intervals.

Two other common verification statistics were also used, root-mean-square
(RMS) errors, and bias, the average forecast divided by the average analyzed

amount.
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3. Results.
a. Properties of forecasts from the individual centers.

Before considering the multi-model and ECMWF reforecast-calibrated
forecast properties, let us consider the verification of PQPFs from the individual
centers. Figure 2 shows > 1 mm (24 h)1 and > 10-mm (24 h)-! event BSS and CRPSS.
ECMWEF generally produced the most skillful raw precipitation PQPFs. Depending on
the metric, either NCEP or UKMO produced the least skillful forecasts.

Interestingly, though UKMO forecasts appeared to be generally more skillful
than NCEP forecasts in BSS, they appeared to be consistently worse in CRPSS. This
was a consequence of the CRPSS verification algorithm as implemented here, which
attempted to equally weight the CRPSS at all grid points, irrespective of whether the
climatological event probability was extremely high or extremely low. The
conventionally calculated CRPSS is dominated by the performance of the forecasts in
the climatologically wet areas (Hamill and Juras 2006). There is inherently greater
climatological variance of precipitation for the wet regions, and associated with this
there are generally much larger CRPS values than in dry regions. Consequently,
when evaluated over many grid points, the conventionally calculated CRPS and
hence the CRPSS are dominated by the performance at the wetter points. Figure 3
shows maps of the day +3 CRPSS scores (see the online appendix for CRPSS maps for
the other lead times). The UKMO forecasts had negative skill in the extremely dry
regions of the western US. The RMS errors of the ensemble-mean forecasts in the
dry regions of all the models were very small and relatively similar (Fig. 4a; for

other lead times, see the online appendix). However, the UKMO forecasts exhibited
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a large moist bias in the climatologically dry regions (Fig. 4b), which resulted in a
very large over-forecast of probabilities and poor skill for those points. This was
apparently due to a drizzle over-forecast bias in that version of the UKMO'’s forecast
model (D. Barker, personal communication, 2011).

Figure 4b also illustrates some other interesting characteristics of the
ensemble systems. NCEP over-forecasted rainfall for the grid points and dates
where the climatological probability was already quite high. CMC forecasts were
also biased, exhibiting a moist bias at the lowest climatological probabilities but dry
biases for most of the rest of the larger climatological probabilities. ECMWF
forecasts were the least biased, with a moderate over-forecast bias at the low
climatological probabilities.

Figure 5 provides reliability diagrams of day +3 forecasts of the > 10-mm (24
h)-1 event. Other reliability diagrams for other lead times and for the > 1-mm (24 h)-
L event are available in the online appendix. CMC forecasts were generally the most
reliable, though they were not as sharp as the ECMWEF forecasts and hence had a
lower BSS. UKMO and NCEP forecasts were much less reliable, though NCEP
forecasts were slightly sharper than the others. ECMWF 50-member forecasts were
slightly more reliable and skillful than their 20-member subset.

In subjective analyses of individual forecasts, it appeared that several of the
forecast models had subtle systematic northward biases in the northern central US.
Figure 6 shows the 10-mm observed contour and the 0.5 probability contour for the
> 10-mm (24 h)1 event from the day +3 ECMWF forecasts. Here, the 25 cases with

the largest areal coverage of observed precipitation between 105° and 80° west
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longitude and 35° and 50° north latitude were chosen. Similar plots for the other

forecast models are included in the online appendix.

b. Properties of multi-model and statistically post-processed forecasts.

Before considering verification scores, consider first two actual forecast
cases, presented in Figs. 6 and 7, showing probabilities from the 20-member
ensembles and from the 80-member multi-model ensemble. The first case, covering
the 24-h period ending 00 UTC 21 July 2010, illustrates that sometimes the forecast
models could be overly similar to each other. Here all the forecast precipitation
areas were significantly north of the observed area. A multi-model forecast would
not be expected to provide much benefit in such a situation. Figure 7 shows the
same type of plot, but for 24-h period ending 00 UTC 7 August 2010. Here the multi-
model forecast provided some improvement. On this day the CMC and UKMO areas
of high probabilities were too far north, the NCEP area too far south, but the higher
probabilities in the multi-model forecasts were more coincident with the analyzed
regions exceeding 10 mm. Most of the area with greater than 10 mm in the analysis
were covered by nonzero multi-model probabilities. More generally, when there
was some diversity of positions in the multi-model forecasts, this often allowed the
forecast to avoid being inappropriately sharp.

Figure 9 provides BSSs and CRPSS for the multi-model and the post-
processed forecasts. For the light precipitation forecasts (> 1.0 mm (24 h)-1, Fig. 9a),
the multi-model forecasts improved the skill by approximately +1 day relative to
ECMWEF at the earliest lead times; a +2 day multi-model forecast could now be made

as skillfully as a +1 day ECMWEF forecast. The improvement in skill was a more
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modest ~ +0.3 days at the longer forecast lead times. The calibrated multi-model
forecast product improved skill over the basic multi-model forecast by a tiny
amount at day +1 but degraded the skill after day +3. This is consistent with
previous results; at the longer lead times, the growth of errors makes it more
difficult to differentiate the model bias from the chaotically induced errors with
short training data sets (Hamill et al. 2004). The improvement from reforecast-
based post-processing over the raw ECMWF system was much smaller than the
improvement from single to multi-model and was even slightly negative at the day
+5lead. Reasons for the less impressive performance of reforecast calibration than
in previous studies will be discussed at the end of this section.

More impressive increases in skill were evident for the > 10-mm (24 h)-!
event. Both the reforecast-based calibration and the multi-model approach
increased forecast skill by an equivalent of up to +2 days of additional lead time.
Again, the calibration of the multi-model forecasts provided modest improvement at
the early leads and degradation at the longer leads relative to the unprocessed
multi-model.

Measured in CRPSS, the multi-model forecasts produced the most skillful
forecasts, exceeding the skill of reforecast-calibrated ECMWEF forecasts by a small
amount. Consider now where the forecasts were improved or degraded by the
various approaches. Figure 10 provides maps of the day +3 CRPSS; maps for other
lead times are in the online appendix. The patterns of multi-model skill are rather

similar to those of the most skillful ensemble system, ECMWF (Fig. 3a). The
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reforecast-calibrated ECMWF forecasts appear to have increased the skill most
notably in the driest regions of the western US.

Figure 11 shows day +3 > 10-mm (24 h)-1 event reliability diagrams for the
multi-model, the calibrated multi-model, and reforecast-calibrated ECMWF PQPFs.
The raw multi-model PQPFs were slightly more reliable than any of the PQPFs from
the individual centers (Fig. 5) and retained a slight over-forecast bias at the higher
probabilities. The improvements in reliability were more substantial than for the >
1-mm (24 h)! event; see diagrams in the online appendix. The reforecast-calibrated
PQPFs exhibited a slight under-forecast bias and were not as sharp as those from
the multi-model forecasts. Was this due to some inhomogeneity between the 2002-
2009 training data and the 2010 real-time forecasts? Figure 12 shows that there
were fewer large forecast busts in 2010 than there were in 2002 or 2006. When the
regression analysis from 2002-2009 data was applied to correct the 2010 forecasts,
the assumption was that the 2010 forecasts would be equally unskillful. In fact they
were better, and as a consequence the post-processed forecasts were less sharp
than they could have been. Though it was not attempted here, it might be possible
to apply ad-hoc corrections to the training data to improve the regression analysis.
Perhaps a slight adjustment of the training data ensemble mean toward the
analyzed data would make its accuracy more closely resemble that of the 2010 data,
sharpening and making the ELR forecasts more reliable and skillful.

Figure 13 shows the multi-model areal coverage of the 0.5 probability
contours for the > 10 mm (24 h)-! event for selected cases; these should be

compared with Fig. 6 for ECMWF-only PQPFs. Figure 14 also shows the areal
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coverage, but for reforecast-calibrated ECMWF PQPFs. The areal coverage was only
slightly smaller for the multi-model PQPFs than it was for the ECMWF PQPFs,
illustrating that the multi-model forecasts did not lose a tremendous amount of
sharpness (coverage of greater than 0.5 probability being a proxy for sharpness
here). In comparison, the reforecast-calibrated PQPFs in Fig. 14 show a marked
decrease in the areal coverage; many grid points with probability p > 0.5 in the raw
ECMWF PQPF had p < 0.5 after calibration. Figures 15 and 16 show for the cases
plotted in Figs. 7 and 8 a bit more detail on what happened with typical multi-model
and reforecast-calibrated PQPFs. The multi-model forecasts retained their
sharpness, but not always desirably so. For example, in Fig. 15, the multi-model
forecasts retain relatively high probabilities in eastern lowa and northern Illinois,
whereas the analyzed area was displaced further south. The reforecast-calibrated
PQPFs decreased the areal coverage of high probabilities, appropriately so in this
case, reducing the false alarms. However, as seen in inspection of Figs. 13-14, there
were many cases when the sharpness retained in the multi-model forecasts was
desirable.

The results exhibited here with reforecast calibration were not as impressive
as they have been in previous studies, e.g., Hamill and Whitaker (2006) and Hamill
et al. (2008). There are at least four reasons for this. First, the training data was not
as accurate as the real-time data in this application (Fig. 12), and this inhomogeneity
degraded the regression analysis. This may have been due to less accurate initial
conditions (ERA-Interim for the reforecast, operational 4D-Var for the real-time

forecasts) and because the reforecast ensemble was initialized with perturbations
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that were constructed with approximations different from those in the real-time
forecasts (section 2b). The second reason is that gratifying improvements have
been made to models and EPSs so that they produce more skillful and reliable
forecasts than they did even in the recent past; it’s tougher to improve upon
ECMWF’s 2010’s model output than its 2005 model output. The third reason is that
even with the use of ECMWF’s reforecasts, there really was a limited training data
set in this study, here due to the unavailability of precipitation analyses prior to
2002 and the unavailability of reforecast data more frequently than once per week.
The fourth reason is that in prior studies, the ensemble forecasts (at coarse
resolution) were evaluated against analysis data at finer resolution, so that the
reforecast calibration process was also producing a statistical downscaling. This
point is worth keeping in mind when considering the relative merits of reforecast
calibration vs. multi-model approaches. If the desired output is forecast data at the
grid scale, multi-models may have substantial appeal. If the desired output is point
data or high-resolution gridded data, the statistical downscaling is more
straightforward when reforecasts are used.

Overall, the impressive skill improvements provide evidence for the merit of
both multi-model ensemble and reforecast approaches. Should other forecast
centers share precipitation ensemble data, large gains in probabilistic precipitation
forecast skill are possible for little more than the cost of data transmission and
storage. Alternatively, should any one center produce and utilize reforecasts, they
can improve their own forecasts significantly, assuming a comparably long time

series of observations or analyses are available. The improvement here noted with
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reforecasts may have also been modest because the training data was limited on
account of a short time series of analyses, dating back to only 2002; only around

40% of the available reforecast data was used.

4. Conclusions.

This article examined probabilistic multi-model weather forecasts of
precipitation over the CONUS and the relative advantages and disadvantages of
these forecasts when compared to statistically post-processed ECMWEF forecasts.
20-member forecasts were extracted from the ECMWF, NCEP, UKMO, and CMC
global ensemble systems at 1-degree resolution between June and October 2010.
Daily 24-h accumulated probabilistic precipitation forecasts were generated from
the subsequent 80-member ensemble for lead times of +1 to +5 days and compared
to gridded precipitation analyses. Two statistically post-processed products were
also evaluated, the first being multi-model forecasts that were adjusted using
extended logistic regression and that were trained on the previous 30 days of
forecasts and analyses. The second was ECMWF forecasts, which were statistically
adjusted using forecast/analysis data for the period 2002-2009, the time period
when both reforecasts and analyses were available.

Considering first the skill of forecasts from the individual EPSs, ECMWF
forecasts generally were the most skillful in terms of Brier skill scores and the
continuous ranked probability skill score. CMC forecasts were the most reliable but
the least sharp, while NCEP and UKMO forecasts were more sharp but less reliable.

Multi-model probabilistic forecast products were substantially more skillful

than the best of the individual centers’ probabilistic forecasts. The improvement
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was approximately an extra +0.5 to +1 day of forecast lead time for light
precipitation events and as much as +2 days for heavier precipitation events. The
reforecast-calibrated ECMWF forecasts exhibited more skill and reliability
improvement at the > 10-mm (24 h)-! event as they did at the > 1-mm (24 h)-! event.
Relative to the multi-model forecasts, the reforecast-calibrated skills were similar
for the > 10 mm (24 h)-1 event, but the reforecast-calibrated was more reliable while
the multi-model was sharper.

The results exhibited here with reforecast calibration were not as impressive
as they have been in previous studies. There were at least four reasons for the
lessened improvement of reforecast calibration here. First, the reforecast training
data was shown to be not as accurate as the real-time data in this application.
Second, gratifying improvements have been made to models and EPSs in the last few
years; it's tougher to improve upon ECMWF’s 2010’s model output than its 2005
model output. Third, limited training data set was available for this study. Fourth,
prior studies were performed at higher resolution and produced a statistical
downscaling that the coarser raw forecasts could not accomplish.

[ was pleasantly surprised by the magnitude of skill improvements
demonstrated here from multi-model ensembles, improvements which were larger
than those seen with 2-meter temperatures (Hagedorn etal. 2011). From our own
experience, however, [ recommend some caution against broadly generalizing these
results to any multi-model ensemble system. This study examined a combination of
data from four mature EPSs based on mature models and assimilation systems.

Each center’s system has been refined through the collective efforts of hundreds if
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not thousands of person-years of research and development. A combination of less
developed EPSs may not provide nearly the same gratifying result.

Nonetheless, these results demonstrate the potential value of multi-model
ensembles. The THORPEX program, organized by the World Meteorological
Organization, has promoted the concept of a multi-model based “Global Interactive
Forecast System” (Bougeault et al. 2010), whereby the operational centers share
data that will facilitate the production of multi-model products for high-impact
weather events. This study provides additional evidence for the validity and the
potential benefits of such a system. Currently several centers have restrictive data
policies; full access to their data is reserved for paying customers, and those
customers cannot thereafter share the data they purchased. Perhaps the approach
embraced in the US and Canada will be followed by other centers worldwide, for the
mutual benefit of all. In the US and Canada, the data is effectively free since the
research, development, and production were funded by public taxpayer funds.

Finally, can we all have “the best of both worlds?” That is, will NWP centers
both agree to share their ensemble data freely and internationally in real time, and
will they produce reforecast data sets so that each model can be calibrated to
remove systematic errors prior to their combination? There is evidence that such
approaches will provide substantial benefit. The climate community is working on
sharing multi-model information and hindcasts to facilitate the error correction for
intra-seasonal and seasonal forecasts. For weather and weather-to-climate
applications, there have also been successful demonstrations of multi-model

calibrated forecasts (Vislocky and Fritsch 1995, Whitaker et al. 2006). NOAA is
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currently developing a new reforecast data set for its global ensemble prediction

system, and I hope that other centers will be inspired to do so as well.
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Appendix 1.
Here are additional details on the forecast models and ensemble systems used in

this experiment.

a. NCEP

NCEP used the Global Forecast System (GFS) model in their ensemble system
at T190L28 resolution. A lengthier description of the physical packages used in this
model were described in Hamill et al. (2011). A description of the GFS model is
available from the NCEP Environmental Modeling Center (EMC), with changes as of

2003 described at www.emc.ncep.noaa.gov/gmb/moorthi/gam.html.
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The control initial condition around which the perturbed initial conditions
were centered was produced by the T382 Global Statistical Interpolation (GSI)
analysis (Kleist et al. 2009) at T384L64 resolution. Perturbed initial conditions
were generated with the ensemble transform with rescaling technique of Wei et al.
(2008). Stochastic perturbations were included, following Hou et al. (2008). More
details on changes to the NCEP ensemble system can be found at

http://www.emc.ncep.noaa.gov/gmb/yzhu/html/ENS_IMP.html.

b. Canadian Meteorological Centre

The CMC EPS used the Global Environmental Multiscale Model, a primitive
equation model with a terrain-following pressure vertical coordinate. Further
documentation on the GEM model can be found at
http://collaboration.cmc.ec.gc.ca/science/rpn/gef_html_public/DOCUMENTATION/
GENERAL/general.html and in Charron et al. (2010). The CMC ensemble system
used a horizontal computational grid of 400x200 grid points, or approximately 0.9
degrees, and 28 vertical levels. The EnKF initial conditions were used, following
Charron et al. (2010) and Houtekamer et al. (2009) and references therein. The 20
forecast ensemble members used a variety of perturbed physics; changing gravity
wave drag parameters, land-surface process type, condensation scheme type,
convection scheme type, shallow convection scheme type, mixing-length
formulation, and turbulent vertical diffusion parameter. More details on these are

provided at http://www.weatheroffice.gc.ca/ensemble/verifs/model_e.html.

c. European Centre for Medium-Range Weather Forecasts.

28



649
650

651

652

653

654

655

656

657

658

659

660

661
662

663
664

665

666

667

668

669

670

671

672

673

The ECMWF EPS used the ECMWF Integrated Forecast System (IFS) model,
versions 36r2. Model resolution was T639L62 for both versions; details on the IFS

are provided at www.ecmwf.int/research/ifsdocs/. The changes to the ensemble

stochastic treatments in the 8 Sep 2009 implementation are described in Palmer et
al. (2009). The ensemble was initialized with a combination of initial-time and
evolved total-energy singular vectors (Buizza and Palmer 1995, Molteni et al. 1996,
Barkmeijer et al. 1998, Barkmeijer et al. 1999, Leutbecher 2005) and utilized
stochastic perturbations to physical tendencies. An overview of the ensemble
system was provided in Buizza et al. (2007) and references therein. For
consistency with the analysis of other EPSs, only the first 20 perturbed members

were used here.

e. United Kingdom Met Office.

The UK Met Office (UKMO) ensemble system was “MOGREPS,” the Met Office
Global and Regional Ensemble Prediction System. TC track forecasts from this
system came from its global component, which was described in Bowler et al. (2008,
2009). The global system was run at a resolution of 0.83° longitude and 0.55°
latitude on a regular latitude-longitude grid. 70 vertical levels were employed
(Tennant et al. 2011). Initial condition perturbations were generated from an
implementation of the ensemble transform Kalman filter (Hunt et al. 2006, Bowler
et al. 2009). The mean initial state was generated from the UKMO 4D-Var system
(Rawlins et al. 2007). The model included a parameterization of one type of model

uncertainty via its stochastic kinetic-energy backscatter scheme, following Shutts
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(2005) and Tennant etal. (2011).
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Appendix 2:

This appendix discusses the method used to augment the training sample
size used in the regression analyses. Were only the data at the grid point of interest
used for training, when calibrating using the multi-model ensemble using the past
30 days of forecasts and analyses, this would provide, of course, only 30 training
samples. Older forecasts could be used, but precipitation biases are often seasonally
dependent, so the older data may degrade the results despite augmenting the
sample size. Also, with such a multi-model ensemble, the farther back into the past
one seeks training data, the more likely it is that at least one of the models will have
had a major upgrade and concomitant change in systematic error characteristics.

Despite ECMWF providing a multi-decadal reforecast, in practice the sample
sizes were too small here, too. When using the 2002-2009 weekly, 5-member
ECMWEF reforecasts (including reforecast dates +/- 6 weeks around the week of
interest), this provided a total of 13 weeks X 8 years = 104 samples. In both cases,
these were relatively small samples to estimate four regression parameters, and
especially for rare events such as heavy precipitation, experience has shown that
larger training samples improved the regression analysis.

Hence, following the general philosophy demonstrated and discussed in
Hamill et al. (2008) and inspired by the regionalization used in some Model Output
Statistics algorithms (Lowry and Glahn 1976), the training data set for a particular
grid point was augmented by finding 25 other grid points that had relatively similar

climatological analyzed CDFs. Consider a particular location (/1,(;5) at which we seek
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to augment the sample size, and another location (/V,gb‘?) we are considering as a

location with suitable supplemental training data. Differences between the analyzed

cumulative probabilities at (/1,(;5) and (/V,gb‘?) were measured at the 1, 2.5, 5, 10, 25,

and 50 mm (24 h)-t amounts and then weighted by similar respective factors of [1,
2.5,5,10, 25, 50]. Thatis, a cumulative probability difference of 0.1 at 1 mm and
0.1/50 at 50 mm were judged to have the same weighted difference (this approach
is admittedly somewhat arbitrary, and testing found that the overall calibration
results were relatively insensitive to the details of this assumption). The maximum

weighted difference at any of the possible precipitation amounts was then noted for

this (/V,gb‘?) . Having evaluated the maximum of the weighted differences all the grid

points less that 8 grid points distant from the grid point of interest (/1,(;5), the 25

grid points with the smallest weighted differences were identified, and the training

sample for (1,¢)was augmented by the forecasts-analysis pairs at these locations.

This approach increased sample size, but it’s possible that the forecast bias might
have been different at the supplemental locations, and hence not an unalloyed

benefit. For more discussion of this, see Hamill et al. (2008, section 3a).
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Figure captions

Figure 1: Illustration of the process for determining precipitation classes used in
the calculation of BSS. (a) Climatological probability of > 1-mm 24h-1
precipitation as determined from Stage-1V data for September 2002-2009.
(b) Climatological class assigned to each grid point for September, 1-mm (24
h)-1 event.

Figure 2: Brier skill scores of various forecasts for the (a) > 1-mm (24 h)1 event,
(b) > 10-mm (24 h)-! event, and (c) continuous ranked probability skill
scores, all as a function of forecast lead time. Error bars denote confidence
intervals, the 5t and 95t percentiles of a paired block bootstrap between
ECMWEF and NCEP forecasts.

Figure 3: Maps of average CRPSS for day +3 forecasts for (a) ECMWF, (b) NCEP, (c)
UKMO, and (d) CMC.

Figure 4: (a) RMS errors, and (b) bias for day +3 forecasts, each as a function of the
climatological probability of greater than 1-mm (24 h)-1. Light grey bars in
panel (a) denote the relative frequency of each climatological probability.

Figure 5: Reliability diagrams for day +3 forecasts for the > 10-mm (24 h)-! event.
(a) ECMWEF, (b) NCEP, (c) CMC, and (d) UKMO. The dark line on each is the
20-member reliability curve. The lighter grey line on panel (a) is the
reliability for the full 50-member ensemble. The inset histogram bars show
the relative frequency of usage for each probability bin. The black lines on

the inset are the relative frequency of usage for the climatological
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distribution across all the sample points. The grey dots on the inset
histogram of panel (a) are the relative frequency of usage for the ECMWF full
50-member ensemble.

Figure 6: Analyzed > 10-mm (24 h)-! precipitation boundary (black line) and area
exceeding 10 mm (grey shading) for 25 cases with the largest areal coverage
of greater than 10 mm in the upper Midwest US. Red lines indicate the 0.5
probability contour from the ECMWF ensemble for the day +3 forecasts of >
10 mm (24 h)-L.

Figure 7: (a) Analyzed precipitation for the 24-h period ending 00 UTC 21 July 2010.
10-mm (24 h)-! contour is denoted by the thick black line. (b) Probability of
greater than 10 mm (24 h)-! for day +3 forecast from the ECMWF ensemble
for the same period. The analyzed 10-mm contour from panel (a) is repeated.
(c) asin (b), but for NCEP. (d) CMC, (e) UK Met Office, and (f) multi-model
combination.

Figure 8: As in Fig. 7, but for 24-h period ending 00 UTC 8 August 2010.

Figure 9: Brier skill scores of various forecasts for (a) > 1-mm (24 h)-! event, and
(b) > 10-mm (24 h)-! event, and (c) continuous ranked probability skill
scores, all as a function of forecast lead time. “Multi-model/cal” refers to
forecasts from the multi-model, calibrated using ELR. “ECMWF /reforecast”
refers to ECMWEF forecasts calibrated using ELR and the reforecast data set.
Error bars denote confidence intervals, the 5t and 95t percentiles of a

paired block bootstrap between ECMWF and NCEP forecasts.
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Figure 10: Maps of CRPSS for day +3 forecasts for (a) multi-model, (b) multi-model
with ELR calibration, and (c) ECMWF with ELR calibration using reforecasts.

Figure 11: As in Fig. 3, reliability diagrams for day +3 forecasts at the > 10-mm
(24 h)1 event. (a) Multi-model forecasts, (b) multi-model with ELR
calibration, and (c) ECMWF with ELR calibration using reforecasts.

Figure 12: A histogram of the absolute errors of day +3 ensemble-mean
precipitation forecasts for the 2002 and 2006 reforecasts and for the 2010,
20-member real-time ensemble.

Figure 13: As in Fig. 6, but for multi-model forecasts.

Figure 14: As in Fig. 6, but for reforecast-calibrated ECMWF forecasts.

Figure 15: (a) Analyzed precipitation for the 24-h period ending 00 UTC 21 July
2010. 10-mm contour is denoted by the thick black line. (b) Probability of
greater than 10 mm (24 h)-! for day +3 forecast from the ECMWF ensemble
for the same period. (c) as in (b), but for multi-model ensemble, and (d) as in
(b), but for reforecast-calibrated ECMWF ensemble.

Figure 16: As in Fig. 15, but for the 24-h period ending 00 UTC 8 August 2010.
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Figure 1: [llustration of the process for determining precipitation classes used in
the calculation of BSS. (a) Climatological probability of > 1-mm 24h-! precipitation
as determined from Stage-IV data for September 2002-2009. (b) Climatological
class assigned to each grid point for September, 1-mm (24 h)-! event.
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Figure 5: Reliability diagrams for day +3 forecasts for the > 10-mm (24 h)-! event.
(a) ECMWEF, (b) NCEP, (c) CMC, and (d) UKMO. The dark line on each is the 20-
member reliability curve. The lighter grey line on panel (a) is the reliability for the
full 50-member ensemble. The inset histogram bars show the relative frequency of
usage for each probability bin. The black lines on the inset are the relative
frequency of usage for the climatological distribution across all the sample

points. The grey dots on the inset histogram of panel (a) are the relative frequency
of usage for the ECMWF full 50-member ensemble.

49



1025
1026

1027
1028

1029
1030
1031
1032
1033

ECMWF Day

+3

(a) 2010/07/05
<D

b

(b) 2010/07/06
KD

(c) 2010/07/08
)

(d) 2010/07/09
)

(e) 2010/07/13
)

(f) 2010/07/15
<D

(h) 2010/07/25
<D

(j) 2010/08/11

=2

U

~
o
-

L /N _»"
N

4

(n) 2010/09/01

(k) 2010/08/14
YY)

(m) 2010/08/22
<D

z &

v A,
v

(o) 2010/09/02
<D

A)N=

(p) 2010/09/12
<D

(q) 2010/09/16
AN

L

(v) 2010/10/27
<D

Figure 6: Analyzed > 10-mm (24 h)-! precipitation boundary (black line) and area
exceeding 10 mm (grey shading) for 25 cases with the largest areal coverage of
greater than 10 mm in the upper Midwest US. Red lines indicate the 0.5 probability
contour from the ECMWF ensemble for the day +3 forecasts of > 10 mm (24 h)-1.
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Figure 7: (a) Analyzed precipitation for the 24-h period ending 00 UTC 21 July 2010.
10-mm (24 h)! contour is denoted by the thick black line. (b) Probability of greater
than 10 mm (24 h)-! for day +3 forecast from the ECMWF ensemble for the same
period. The analyzed 10-mm contour from panel (a) is repeated. (c) as in (b), but
for NCEP. (d) CMC, (e) UK Met Office, and (f) multi-model combination.
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Figure 8: As in Fig. 7, but for 24-h period ending 00 UTC 8 August 2010.
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Figure 13: As in Fig. 6, but for multi-model forecasts.
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Figure 14: As in Fig. 6, but for reforecast-calibrated ECMWF forecasts.
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2010. 10-mm contour is denoted by the thick black line. (b) Probability of greater
than 10 mm (24 h)-! for day +3 forecast from the ECMWF ensemble for the same
period. (c) asin (b), but for multi-model ensemble, and (d) as in (b), but for
reforecast-calibrated ECMWF ensemble.
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Figure 16: As in Fig. 15, but for the 24-h period ending 00 UTC 8 August 2010.
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